73RD ANNUAL MEETING OF THE EUROPEAN FEDERATION OF ANIMAL SCIENCE

THE COEXISTENCE OF WILDLIFE AND LIVESTOCK

PORTO – PORTUGAL

4 SEPTEMBER – 9 SEPTEMBER 2022

Comparative analyses of inbreeding on the X-chromosome in Croatian sheep breeds

Shihabi M, Cubric-Curik V, Ferenčaković M, Vostry L & Curik I

Animal Genetics Group https://angen.agr.hr

Session 01. Coordination of local and transboundary breed conservation; the role ... , 5th September at 10:00

Background

Estimation of inbreeding - increase in homozygosity (autozygosity)

- ✓ Higher frequency of detrimental genetic disorders
 - ✓ Inbreeding depression
 - ✓ Redistribution of genetic variances
 - central point of population genetics/genomics –

X-chromosome at non-PAR

- Higher genetic drift & smaller Ne (3/4), $Ne_X = (9 N_m N_f) / (4 N_m + 2 N_f)$
- Reduced genetic diversity (48-80%)
- Mutations occur less frequently (lower in females vs. males in mammals)
- Lower recombination rate & higher linkage disequilibrium (2/3)
- Specific selection pressure (detrimental mutations)
- Sex-biased admixture

Inbreeding & X chromosome - limited information available

Pedigree sex (X-chromosome) inbreeding coefficient

No possibility of A_2A_2 or A_3A_3 female !

F_{sex} = **0** versus **F** = **0.0625**

A₁ Y $A_2 A_3$ female A_1 $A A_1$ Α 1/2 1/2 1/2 1/2 1/2 $A_5 \mathbf{A}(\mathbf{A_1})$ $A(A_1) Y$ 1/2 1/2 1/2 1/2 AA(A₁A₁) $Pr(A_2A_2 \text{ or } A_3A_3) = \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = (\frac{1}{2})^5$ $Pr(A_1A_1) = 1 * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = (\frac{1}{2})^4$ $F_{sex} = (\frac{1}{2})^5 + (\frac{1}{2})^4 = 0.09375$ versus F = 0.0625

Aim of the study

- Estimation of genomic inbreeding coefficients on the X chromosome in Croatian sheep breeds
- Comparison of different estimated genomic coefficients
 & X versus autosomal chromosomes
- 3. Segmental variation of inbreeding on X chromosome

Genomic inbreeding coefficients

a) Identity-by-state (IBS)

- LH₁ (Li & Horvitz 1953, AJHG)

- VR₁ (VanRaden 2008, JDS)

- Ya₂ (Yang et al., 2010, NG)

b) Identity-by-descent (IBD)

- ROH (McQuillan et al., 2008, AJHG)

- HBD (Druet & Gautier, 2017, ME)

7 East Adriatic sheep breeds – 98 female individuals

Krk Island Sheep (13), Pag Island Sheep (13), Cres Island Sheep (14), Rab Island Sheep (12), Istrian sheep (13), Dalmatian Pramenka (13) & Dubrovnik Ruda (20)

Ovine Infinium[®] HD SNP BeadChip 600K

GenTrain score <0.4 GenCall score <=0.8 Genotype call rate <0.9 HWE 10⁻⁷ Duplicates Individual call rate <0.95 27 questionable SNPs

X chromosome: 18 983 SNPs

Autosomes: 391 755 SNPs

Methods – estimation of inbreeding

IBS

IBD

Genomic inbreeding coefficients, F_{LH1} & F_{LH1x} : Li & Horvitz, 1953 - PLINK as F_{HOM}

Genomic inbreeding coefficients, **F**_{VR1} & **F**_{VR1X} : VanRaden 2008

- GCTA as F_{HOM} with the option --make-grm-alg 1

Genomic inbreeding coefficients, $F_{Ya2} \& F_{Ya2X}$: Yang et al., 2010 - GCTA as F_{HAT3}

Genomic inbreeding coefficients without Hi-IBD segment (40 – 75.8 Mb)

- F_{LH1Xr}, F_{VR1Xr} & F_{Ya2Xr}

ROH inbreeding coefficients, $F_{ROH} \& F_{ROHX}$: Ferenčaković et al., 2013

- SVS, ROH sizes related to 1, 4 & 8 Mb
- sliding window of 7.03 Mb (by 0.2) along X chromosome

Homozygosity by Descent coefficients, **F**_{HBD} : Druet & Gautier, 2017

- Mixkr model with predefined rates, base_rate of 2 & with 8 classes (2, 4, ..., 128 & non-HBD) going 64 generations back

Results – estimated genomic inbreeding

Genomic Inbreeding coefficients; F_{LH1}, F_{VR1} & F_{Ya2}

ROH Inbreeding coefficients; F_{ROH1}, F_{ROH4} & F_{ROH8} (>1, >4 & >8 Mb)

HBD Inbreeding coefficients; F_{HBD64} & F_{HBD16}

sliding window of 7.03 Mb (by 0.2)

Comparative illustration of the estimation of IBD genomic inbreeding

High IBD appearance - recombination and/or selection ?

Correlations – inbreeding coefficients for the X chromosome

	F _{LH1X}	F _{VR1X}	F _{Ya2X}	F _{ROH1X}	F _{ROH4X}	F _{ROH8X}	F _{HBD64X}	F _{HBD16X}
F _{LH1X}	1.00	0.98	0.97	0.92	0.89	0.85	0.93	0.95
F _{VR1X}		1.00	0.99	0.96	0.92	0.86	0.98	0.97
F _{Ya2X}			1.00	0.97	0.93	0.87	0.99	0.97
F _{ROH1X}				1.00	0.96	0.92	0.97	0.96
F _{ROH4X}					1.00	0.97	0.91	0.94
F _{ROH8X}						1.00	0.85	0.89
F _{HBD64X}							1.00	0.98
F _{HBD16X}								1.00

Correlations – autosomes versus X chromosome : 0.65 – 0.70

Inbreeding coefficient - IBS	Partial correlations		
F _{LH1} , F _{LH1X}	0.65		
F _{vr1} , F _{vr1x}	0.68		
F _{Ya2} , F _{Ya2X}	0.67		
F _{LH1} , F _{LH1Xr}	0.65		
F _{VR1} , F _{VR1Xr}	0.68		
F _{Ya2} , F _{Ya2Xr}	0.68		

Inbreeding coefficient - IBD	Partial correlations			
F _{ROH1} , F _{ROH1X}	0.66			
F _{ROH4} , F _{ROH4X}	0.67			
F _{ROH8} , F _{ROH8X}	0.66			
F _{HBD64} , F _{HBD64X}	0.69			
F _{hbd16} , F _{hbd16x}	0.70			

Conclusions & future work

Genomic inbreeding coefficients for the X chromosome

- IBS genomic inbreeding coefficients, X chromosome versus autosomes, were not different by magnitude
- IBD genomic inbreeding coefficients were higher in X chromosome, particularly for remote estimates. Region with dense IBD segments detected
- Almost all X chromosome inbreeding coefficients had larger variation in comparison to autosome estimates
- For all (IBS & IBD) genomic inbreeding coefficients correlations between X chromosome and autosomes were similar ranging from 0.65 to 0.70

Part of the PhD thesis - Mario Shihabi

- Future work and challenges:
- to include more species
- to support evidence by computer simulations
- to evaluate impact of recombination

This study was supported by projects: ANAGRAMS-IP-2018-01-8708, QK1910156 & SirjeIn KK.01.1.1.04.0058

Europska unija Zajedno do fondova EU

glad to answer

Hrzz Croatian Science Foundation

REPUBLIC OF CROATIA Ministry of Science and Education

MINISTERSTVO ZEMĚDĚLSTVÍ

Thanks for your attention!