73RD ANNUAL MEETING OF THE EUROPEAN FEDERATION OF ANIMAL SCIENCE

THE COEXISTENCE OF WILDLIFE AND LIVESTOCK

PORTO - PORTUGAL

4 SEPTEMBER - 9 SEPTEMBER 2022

Haplotype richness drop: a new method for mapping selection signatures

Curik Ino

Shihabi M, Lukic B, Cubric-Curik V, Brajkovic V & Vostry L

Animal Genetics Group https://angen.agr.hr

Session 14. Novelties in genomics research and their impact on genetic selection, 5th September at 15:00

Saravanan et al. (2020) Livestock Science

To present new approach - Haplotype Richness Drop (HRiD) for mapping selection signals within populations

- complementation to other intra-population statistical approaches

- ✓ Motivation
- ✓ Background and basic idea
- Empirical evaluation and comparison with other approaches
- ✓ Drawbacks
- ✓ Possibilities and future work

Motivation

extreme Runs Of Homozygosity islands

Across the genome distributions of ROH are not uniform ! **Positive selection signals**

Humans: Nothnagel et al., 2010; Pemberton et al., 2012 Domestic animals: Boyko et al. 2010; Curik et al., 2014

Population under selection: # alleles >

- favouring fixation of selected alleles (haplotypes)

Partially inbred HWE population: # alleles =

- increase of homozygosity across all genotypes

Homozygotes: $Q_{ii} = f p_i + (1-f) p_i^2$ Heterozygotes: $Q_{ij} = 2p_ip_j - 2 f p_ip_j$, where i<j

Frontiers | Frontiers in Genetics

ORIGINAL RESEARCH published: 11 April 2022 doi: 10.3389/fgene.2022.887582

Identification of Selection Signals on the X-Chromosome in East Adriatic **Sheep: A New Complementary** Approach

Mario Shihabi¹*, Boris Lukic², Vlatka Cubric-Curik¹, Vladimir Brajkovic¹, Milan Oršanić³, Damir Ugarković³, Luboš Vostry⁴ and Ino Curik¹*

¹Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia, ²Department for Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences Osijek, J.J. Strossmayer University of Osijek, Osijek, Croatia, ³Department of Forest Ecology and Silviculture, Faculty of Forestry and Wood Technology, University of Zagreb, Zagreb, Croatia, ⁴Department of Genetics and Breeding, Faculty Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Praque, Czechia

Background and basic idea

Directional selection (fixation) vs. non-selected population (drift)

Drop (\) in the number (#) of alleles (haplotypes) is an indication of the positive selection signal

The effective number of alleles is a measure of allelic richness,

"the number of alleles that would result in the same expected heterozygosity (homozygosity) at the same frequencies as in a population in which not all allele frequencies are the same" (originally defined by *Kimura and Crow, 1964*).

Effective number of alleles (haplotypes) = $1 / \Sigma p_i^2$

For example, a population with five alleles with frequencies $p_1 = 0.68$, $p_2 = 0.17$, $p_3 = 0.05$, $p_4 = 0.05$ and $p_5 = 0.05$ has the same effective number of alleles (2) as a population with two alleles with the same frequencies ($p_1 = 0.5$ and $p_2 = 0.5$).

Haplotype richness Drop - HRiD

Sliding windows W_i where i = 1, ..., n

Statistical evaluation

 standardisation (normalisation) and through the one-sided distribution (all windows) conversion to the – log (P values) Empirical evaluation & comparison with other apporaches

Identification of Selection Signals on the X Chromosome in East Adriatic Sheep (100 males)

- log (P values)

Position (Mb)

Signal name	Position (Mb)	n _a	h_{w}	HRiD	-log(P)	Candidate genes
HRiD_w1	13.04-13.62	42	5.4	9.6	56.5	TMEM27, CDC42, <u>CA5B</u> , <u>ZRSR2</u> , <u>AP1S2</u> , <u>GRPR</u>
HRiD_w2	115.30-115.73	36	13.3	4.2	8.7	AMOT, LHFPL1
HRiD_w3	73.90-74.54	13	4.3	3.2	4.5	DACH2
HRiD_w4	73.57-74.20	10	1.9	3.1	4.1	CHM, DACH2
HRiD_w5	56.64-58.09	33	6.9	3.1	4.0	AR, OPHN1, YIPF6

Drawbacks

Sensitivity to the size of window !?

The size of the window = 70 SNPs with a slider of 35 SNPs (≈ 500 Kb & 250 Kb) to allow direct comparison of signals with those obtained by other methods.

HRiD score w_i = $\frac{h_{wi} + h_{wi+2}}{2 h_{wi+1}}$

Directional positive selection: HRiD > 1

Window size ?

Directional positive selection: HRiD > 1

HRiD score 1 w_i =
$$\frac{h_{wi} + h_{wi+2}}{2 h_{wi+1}}$$
 HRiD score 2 w_i = $\frac{H_{wi-1} + h_{wi+3}}{2 h_{wi+1}}$

Possibilities and future work

✓ Balancing selection (overdominance): HRiD < 1</p>

Two-sided statistical evaluation ?

- Phased diploid genomic information
- ✓ Computer simulations required
- ✓ Basic R script available, while implementation of extended version to Ghap (Yuri Utsonomiya) is discussed

This study was supported by projects: ANAGRAMS-IP-2018-01-8708, QK1910156 & SirjeIn KK.01.1.1.04.0058

Europska unija Zajedno do fondova EU

any questíons

glad to answer

REPUBLIC OF CROATIA Ministry of Science and Education

Thanks for your attention!