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Abstract 
 
High-density SNP arrays are available and routinely used for genetic improvement of 
livestock populations. At the same time, mitogenome SNPs have rarely been used. In this 
study, we empirically evaluated 331 mitogenome SNPs included in the GGP Bovine 100K 
SNP array developed in collaboration with NEOGEN Genomics (Lincoln, NE, USA). Here 
we present a pipeline for the potential use of mitogenome SNPs with some examples: i) 
classification of haplogroups with emphasis on rare ones (I, P, Q, R and T5), ii) pedigree 
verification iii) pedigree and haplotype imputation, iv) deleterious mutation detection v) 
mitogenomic and nuclear diversity, and vi) standard mitogenome classification and 
phylogenetics. In summary, 317 mitogenome SNPs have been successfully validated and 
contribute as additional information to autosomal markers in population genomic analyses. 
We believe that our study will help to promote the use of mitogenome information in cattle 
breeding and biodiversity management. 
 
Introduction  
Mitochondria play a central role in cellular energy production. These organelles contain their 
own maternally inherited mitogenome, which in most vertebrates including mammalian 
livestock encodes 37 genes and has a non-coding region that has been widely used in studies 
of genetic diversity and evolution. While high-density SNP arrays are available and routinely 
used for genetic improvement of livestock populations, mitogenome SNPs have rarely been 
used. Therefore, this study aims to increase the use of mitogenome information in animal 
breeding by selecting and verifying 331 mitochondrial SNPs for the new NEOGEN GGP 
Bovine 100K SNP Chip and developing a pipeline for practical analysis. 
 
Materials & Methods 
 
Reference Dataset. The idea to include SNP mitogenomes in the new GGP100K SNP chip 
arose from a meta-analysis of sequence variability of the bovine mitogenome (Cubric-Curik et 
al., 2021), which in the meantime, since publication, already includes a newly expanded set of 
1068 sequences and over 150 breeds. 
 
SNP selection. The discriminatory set of mitogenome SNPs was selected based on the 
pairwise FST values (equal to 1) between all haplogroups among them (I, P, Q, R, T1, T2, T3, 
T5) (Cubric-Curik et al., 2021). FST values were calculated using DnaSP v6 software (Rozas 



 

et al., 2017) and Arlequin v3.5 (Exoffier et al., 2015), while SNP primers 150 bp in length 
were prepared for the GGP Bovine 100K SNP chip. Core SNP selection included 100 SNPs: 
i) 70 SNPs for haplogroup classification, ii) 20 SNPs for more detailed haplogroup 
classification within the T3 haplogroup, as this is the most common one in commercial cattle 
breeds, and iii) 10 SNPs for LHON1 disease. Additional SNP selection included 231 SNPs: i) 
199 SNPs for haplogroup classification and ii) 32 SNPs for MELAS2 disease. 
 
SNP array. From the study by Cubric-Curik et al. (2021), 129 samples (breeds: Austrian n=9, 
Greek n=5, Croatian n=4, Slovenian n=1) previously sequenced using NGS technology and an 
additional 135 new samples (breeds: Greek n=5, Croatian n=4, Austrian n=1) were selected 
for genotyping. 
 
Results and discussion 
 
Validation. 129 samples (sequenced, genotyped) were for "full" validation, while the new 135 
samples (genotyped) were for “blind” functionality of mitogenome SNPs. 317 of 331 SNPs 
passed the sequence and genotype validation comparison. This is confirmed by the 
haplogroup classification of the new samples, which can be seen as grey-coloured haplotypes 
within the known haplogroups in the median-joining (MJ) network constructed with PopART 
(Leigh and Bryant) (Figure 2). It is important to note that all haplogroups except “I” were 
successfully validated because we had no samples of that haplogroup. Due to the simplicity of 
the MJ network representation, SNP positions with gaps in ancient DNA (aDNA) samples 
were not considered in the construction of the haplotypes. It is worth noting that all aDNA 
samples were in or close to the core of the haplogroups.  
 

 

 
1 Leber Hereditary Optic Neuropathy 
2 Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like episodes 



 

Figure 1. The Median-Joining network for the 181 mitogenome SNPs shows the 
phylogenetic positions of 77 haplotypes found in 383 samples of Bos taurus, Bos 
primigenius, and Bos indicus (129 samples sequenced and genotyped; 135 samples 
genotyped; additional 119 samples from the Cubric-Curik et al. (2021) study for better 
classification). For aDNA samples the number within the name indicates the year before 
present.  
 
Mitogenome utilisation pipeline. Here we present a pipeline of potential use of mitogenome 
SNPs (Figure 2.) 
 

  
Figure 2. Utilization pipeline steps. 
 
Step 1: Receipt of final report raw data of genotyped samples from NEOGEN Genomics. 
Step 2: Import and visualise data with Rstudio (R Core Team, 2019; RStudio Team, 2020). 
Step 3: Process the data using the tidyverse package collection (Wickham et al., 2019), merge 
with the mitogenome reference database, and format according to the type of analysis. 
Step 4: 1) Possible classification of haplogroups as shown in Figure 1. 2) specific SNP 
classification using the tidyverse package collection (Wickham et al., 2019). 
Step 5: Verification of complex pedigree errors using mitogenome haplotypes (maternally 
inherited), which has been well validated on a long and complex Lipizzaner horse pedigree 
using the computational approach of MaGelLAn 1.0 software (Čačić et al., 2014; Ristov et al., 
2016). 
Step 6: 1) Since the mitogenome is maternally inherited, MaGelLAn 1.0 makes it possible to 
quickly identify maternal lineages and assign the corresponding mitogenome sequences to all 
individuals in the pedigree, so that the phenotypic information can be used as input to any 
standard software for quantitative genetic (association) analyses (Ristov et al., 2016). Such 
examples of estimating proportions of phenotypic variances of different traits explained by 
mitogenome variation can be found in rabbits (Nguyen et al., 2018) and Holstein cattle 
(Brajkovic et al., 2018). 2) Possible imputation of SNPs to construct the whole mitogenome 
consensus sequence considering SNPs that were not genotyped. For more information on 
mitogenome imputation in humans, see Ishiya et al. (2019) and McInerney et al. (2021). 
Step 7: Ability to identify mitochondrial genetic disorders associated with LHON and 
MELAS disease by screening 42 potentially deleterious mtDNA mutations in cattle. While 
mitochondrial diseases are well documented in humans, to prove the concept, the first 



 

deleterious mutation, T10432C (T10663C in humans) in the ND4L subunit, was found in the 
Slovenian breed Cika with exophthalmos of the right eye (Novosel et al., 2019), with 
aetiology and pathogenesis confirmed based on the tissue examined (unpublished data). 
Step 8: Various diversity analyses can be performed using autosomal SNP array data. Here, 
we propose mitogenome-level analysis to enrich for maternal diversity. For example, the FST 
value between breeds can be calculated and potentially used to detect upgrading of breeds. 
Step 9: Based on the imputed sequences, we can proceed with standard mitogenome 
classification and phylogenetic analysis, for example, using BEAST and Mitotoolpy. 
 
In summary, 317 mitogenome SNPs have been successfully validated in the new GGP100K 
SNP chip and contribute as additional information to autosomal markers in population 
genomic analyses. We believe that our study will help to promote the use of mitogenome 
information in cattle breeding and biodiversity management. 
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